These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid fabrication of bionic pyrogallol-based self-adhesive hydrogel with mechanically tunable, self-healing, antibacterial, wound healing, and hemostatic properties. Author: Tang L, Dang Y, Wang Y, Zhang Y, Hu T, Ding C, Wu H, Ni Y, Chen L, Huang L, Zhang M. Journal: Biomater Adv; 2022 May; 136():212765. PubMed ID: 35929329. Abstract: Hydrogels are functional materials that are similar to human skin and have received much attention in recent years for biomedical applications. However, the preparation of nontoxic, highly adhesive, and antimicrobial hydrogels in an efficient way remains a great challenge. Inspired by adhesive mussel foot proteins (mfps) which consist of abundant catecholic amino acids and lysine (Lys) residues, gallic acid-modified ε-poly-L-lysine (EPL/GA) was synthesized, and an active functional monomer (AA-EPL/GA) was then created through a reaction with acrylic acid (AA). The polymerization of AA-EPL/GA occurred rapidly (30-160 s) under blue light (λ = 405 nm) irradiation to produce a biomimetic PAA-EPL/GA hydrogel under mild conditions. The biomimetic pyrogallol-Lys distribution endowed the PAA-EPL/GA hydrogels with superior adhesion in humid environments (with an adhesive strength of 50.02 kPa toward wet porcine skin) and tunable mechanical and self-healing properties. Additionally, the PAA-EPL/GA hydrogels exhibited outstanding antibacterial ability due to the inherent characteristics of GA and EPL. In a mouse model, PAA-EPL/GA adhered firmly around the wound tissues. Photographs of the wound and the histological results demonstrated the ability of the hydrogel to promote wound healing, control wound infection, and suppress scar formation. Moreover, the hydrogel had a good hemostatic effect on liver bleeding. Our results highlighted the promising application potential of GA-based hydrogels, which were easily, harmlessly, and efficiently fabricated by blue light irradiation.[Abstract] [Full Text] [Related] [New Search]