These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations. Author: Zou Y, Shi Y, Sun F, Liu J, Guo Y, Zhang H, Lu X, Gong Y, Xia S. Journal: Comput Methods Programs Biomed; 2022 Oct; 225():107038. PubMed ID: 35930861. Abstract: BACKGROUND AND OBJECTIVES: Central cervical lymph node metastasis (CLNM) is considered a risk factor for recurrence in patients with papillary thyroid carcinoma (PTC). Traditional machine learning models suffered from "black-box" problems, which could not exactly explain the interactive effects of the risk factors. We aimed to develop an eXtreme Gradient Boosting (XGBoost) model to assess CLNM, including positive and negative effects. METHODS: 1,122 patients with PTC admitted at Tianjin First Central Hospital from 2016 to 2020 were retrospectively selected. They were randomly divided into the training and test datasets with an 8:2 ratio. 108 patients with PTC admitted at Binzhou Medical University Hospital in 2020 served as the validation dataset. The XGBoost model was used to assess CLNM. The 10-fold cross-validation was utilized for model selection, and the metric used to evaluate classification performance was the average area under the curve (AUC) of 10-fold cross-validation. Interpretation and transparency of the "black-box" problem were performed. SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanation (LIME) were used to ensure the stability and reliability of the model. RESULTS: The XGBoost model based on ultrasound and dual-energy computed tomography images of the solitary primary lesion had an excellent performance for assessing CLNM, with average AUCs of 0.918, 0.903, and 0.881 in the training, test, and validation datasets, respectively. SHAP plots showed the influence of each parameter on the XGBoost model, including positive (i.e., capsular invasion, diameter, iodine concentration in the venous phase, and calcification) and negative (i.e., sex and age) impacts. For all cases, the capsular invasion prediction weight was the highest; for individual cases, different predictors were assigned different weights. Moreover, the performance of the XGBoost model was better than classical machine-learning models. CONCLUSIONS: This study developed and validated an XGBoost model for assessing CLNM in patients with PTC. The ability to visually interpret the positive and negative effects made the XGBoost model an effective tool for guiding clinical treatment.[Abstract] [Full Text] [Related] [New Search]