These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism.
    Author: Akash S, Sivaprakash B, Rajamohan N.
    Journal: Environ Res; 2022 Nov; 214(Pt 3):113999. PubMed ID: 35932837.
    Abstract:
    Electro deionization using microbial communities has been proven as a competent method for desalination and abatement of water pollution by removing ionic chemicals from the target waters. Microbial Desalination Cell (MDC) facilitates microbial deionization which can either support or be a substitute for the conventional desalination methods. Generation of electricity is accomplished by the bio electrochemical oxidation of organic compounds present as contaminants in wastewater which in turn attribute to the migration of ions in MDC system. The present review aims to elucidate the theory, principles and the application of microbial desalination cell and microbial fuel cell (MFC) in treatment of saline and wastewaters. Air cathode MDC and stacked MDC for purification of saline water are found to give promising results. Air pump assisted microbial desalination cell reported 150.39 ppm h-1 of salt removal with an operational time period of 80 h and showed consistent results. Hence the air cathode assisted MDC showed dominant capacity of salt removal compared to stacked MDC. Also, three major types of microbial fuel cell, namely photosynthetic biofilm MFC, constructive wetland MFC and ceramic membrane supported MFC are reviewed for their potentials in wastewater treatment by deionization method and electricity generation. Complete (100%) removal of chemical oxygen demand was reported by photosynthetic microbial fuel cell operated for 16 days having 435.8 Ω of external resistance. When constructive wetland microbial fuel cell was operated for 10 days with 1000 ohms of external resistance, it exhibited complete (100%) removal of chemical oxygen demand from the wastewater. About 92% of chemical oxygen demand removal was demonstrated by ceramic membrane supported microbial fuel. Compared to ceramic membrane microbial fuel cell, photosynthetic and constructive wetland microbial fuel cell displayed better performance in terms of pollutant removal capacity and economical factor. Ability of the electrogenic species, namely Geobacter, Shewanella, Clostridium and Bacillus and the photosynthetic species, namely Chorella Vulgaris Rhodopsuedomonas, and Scenedesmus abundans in microbial deionization methods and their performance levels reported by several researchers are presented.
    [Abstract] [Full Text] [Related] [New Search]