These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of apoptosis through inactivation of ROS-dependent PI3K/Akt signaling pathway by platycodin D in human bladder urothelial carcinoma cells. Author: Park C, Cha HJ, Lee H, Jeong JW, Han M, Song KS, Kim GY, Chang YC, Leem SH, Hyun JW, Kim HS, Hong SH, Choi YH. Journal: Gen Physiol Biophys; 2022 Jul; 41(4):263-274. PubMed ID: 35938960. Abstract: Platycodin D (PD) is a triterpenoid saponin, a major bioactive constituent of the roots of Platycodon grandiflorum, which is well known for possessing various pharmacological properties. However, the anti-cancer mechanism of PD in bladder cancer cells remains poorly understood. In the current study, we investigated the effect of PD on the growth of human bladder urothelial carcinoma cells. PD treatment significantly reduced the cell survival of bladder cancer cells associated with induction of apoptosis and DNA damage. PD inhibited the expression of inhibitor of apoptosis family members, activated caspases, and induced cleavage of poly (ADP-ribose) polymerase. PD also increased the release of cytochrome c into the cytoplasm by disrupting the mitochondrial membrane potential while upregulating the expression ratio of Bax to Bcl-2. The PD-mediated anti-proliferative effect was significantly inhibited by pre-treatment with a pancaspase inhibitor, but not by an inhibitor of necroptosis. Moreover, PD suppressed the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and the apoptosis-inducing effect of PD was further enhanced by a PI3K inhibitor. In addition, PD increased the accumulation of reactive oxygen species (ROS), whereas N-acetyl cysteine (NAC), an ROS inhibitor, significantly attenuated the growth inhibition and inactivation of the PI3K/Akt/mTOR signaling caused by PD. Furthermore, NAC significantly suppressed apoptosis, DNA damage, and decreased cell viability induced by PD treatment. Collectively, our findings indicated that PD blocked the growth of bladder urothelial carcinoma cells by inducing ROS-mediated inactivation of the PI3K/Akt/mTOR signaling.[Abstract] [Full Text] [Related] [New Search]