These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mercury (Hg2+) Detection in Aqueous Media, Photocatalyst, and Antibacterial Applications of CdTe/ZnS Quantum Dots.
    Author: Molaei M, Farahmandzadeh F, Hemmati R.
    Journal: J Fluoresc; 2022 Nov; 32(6):2129-2137. PubMed ID: 35947332.
    Abstract:
    In the present work, CdTe/ZnS high luminescence quantum dots (QDs) were synthesized by a facile, fast, one-pot, and room temperature photochemical method. Synthesized QDs were characterized by different structural and optical analyses such as X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR), Raman, photoluminescence (PL) and UV-visible (UV-vis) spectroscopies. The results confirmed the successful growth of the ZnS shell and formation of CdTe/ZnS core/shell structure. CdTe/ZnS prepared QDs indicated a PL quantum yield of about 51%. These high luminescence QDs were used for detection of Hg2+ ions in aqueous media, as catalyst for photodegradation of different organic dyes, and as antibacterial material for the inhibition of bacterial growth. PL intensity of the CdTe/ZnS QDs was completely quenched after addition of 1 m molar Hg2+in to the media. Photocatalyst activity of CdTe/ZnS QDs was studied by rhodamine b, methylene blue, and methylene orange as organic dyes under both the sun and UV illuminations, and results showed that CdTe/ZnS QDs had the best photocatalyst activity for methylene blue degradation under UV irradiation and radical scavenger results indicated that electrons have a main role in photodegradation of methylene blue dye by CdTe/ZnS QDs under UV illumination. Antibacterial effects of CdTe/ZnS QDs evaluated by Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) methods against two strains of bacteria. The results of the antibacterial test showed that CdTe/ZnS could inhibit bacterial growth in Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative G) bacteria.
    [Abstract] [Full Text] [Related] [New Search]