These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-throughput fluorescent screening of β-lactamase inhibitors to improve antibiotic treatment strategies for tuberculosis.
    Author: Yan F, He S, Han X, Wang J, Tian X, Wang C, James TD, Cui J, Ma X, Feng L.
    Journal: Biosens Bioelectron; 2022 Nov 15; 216():114606. PubMed ID: 35952435.
    Abstract:
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which is a major threat to global public health. Currently, β-lactam antibiotics are rarely used in the treatment of TB, since Mtb naturally expresses β-lactamase (Blac) which renders Mtb resistant to such antibiotics due to β-lactam cleavage. Fortunately, antibiotic resistance can be overcome when β-lactam antibiotics are combined with a Blac inhibitor. With the current research, a near-infrared fluorescent probe LXMB was developed for the real-time detection and imaging of endogenous Blac activity in Mtb. Furthermore, a high-throughput screening platform was established using LXMB to screen Blac inhibitors from herbal medicines. Guided by the visual bioassay, Tannic acid was isolated from Galla Chinensis as a potential Blac inhibitor and was further evaluated in combination with several β-lactam antibiotics which resulted in an enhanced inhibitory effect toward M. tuberculosis H37Ra. Finally, LXMB was used to label live M. tuberculosis H37Ra phagocytosed within macrophages. Consequently, LXMB was a useful fluorescent tool to explore the mechanism of drug resistance based on Blac and can assist in the development of new tuberculosis treatments.
    [Abstract] [Full Text] [Related] [New Search]