These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fine Mapping of qTGW7b, a Minor Effect QTL for Grain Weight in Rice (Oryza sativa L.). Author: Gu H, Zhang K, Gull S, Chen C, Ran J, Zou B, Wang P, Liang G. Journal: Int J Mol Sci; 2022 Jul 27; 23(15):. PubMed ID: 35955422. Abstract: Grain weight is a key trait that determines rice quality and yield, and it is primarily controlled by quantitative trait loci (QTL). Recently, attention has been paid to minor QTLs. A minor effect QTL qTGW7 that controls grain weight was previously identified in a set of chromosomal fragment substitution lines (CSSLs) derived from Nipponbare (NPB)/93-11. Compared to NPB, the single segment substitution line (SSSL) N83 carrying the qTGW7 introgression exhibited an increase in grain length and width and a 4.5% increase in grain weight. Meanwhile, N83 was backcrossed to NPB to create a separating population, qTGW7b, a QTL distinct from qTGW7, which was detected between markers G31 and G32. Twelve near-isogenic lines (NILs) from the BC9F3 population and progeny of five NILs from the BC9F3:4 population were genotyped and phenotyped, resulting in the fine mapping of the minor effect QTL qTGW7b to the approximately 86.2-kb region between markers G72 and G32. Further sequence comparisons and expression analysis confirmed that five genes, including Os07g39370, Os07g39430, Os07g39440, Os07g39450, and Os07g39480, were considered as the candidate genes underlying qTGW7b. These results provide a crucial foundation for further cloning of qTGW7b and molecular breeding design in rice.[Abstract] [Full Text] [Related] [New Search]