These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computational design of a chitosan derivative for improving the color stability of anthocyanins: Theoretical calculation and experimental verification. Author: Ai X, Pan F, Yang Z, Li J, Tuersuntuoheti T, Wang O, Zhao L, Zhao L. Journal: Int J Biol Macromol; 2022 Oct 31; 219():721-729. PubMed ID: 35963343. Abstract: The objective of this study was to design a chitosan (CS) derivative with good protective effect on the color stability of anthocyanins (ACNs) under accelerated storage. The binding affinities and interactions of 12 organic acids with cyanidin-3-O-glucoside (C3G) were evaluated using quantum mechanics method. Sinapic acid (SinA) showing the strongest interaction with C3G was selected for the synthesis of SinA-grafted-CS (SinA-g-CS), which was further characterized by FTIR and 1H NMR. Under accelerated storage conditions (40 °C), SinA-g-CS significantly improved the color stability of black rice anthocyanins (BRA) in the presence of l-ascorbic acid (pH 3.0), and showed a better protective effect than that of CS. Moreover, molecular dynamics simulation analysis showed SinA-g-CS formed more hydrogen bonds with C3G than CS. Our study demonstrated that SinA-g-CS designed by computational methods can effectively protect ACNs from degradation, and has the potential to be used in ACN-rich beverages as a replacement for CS.[Abstract] [Full Text] [Related] [New Search]