These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mode of growth of retinal axons within the tectum of Xenopus tadpoles, and implications in the ordered neuronal connection between the retina and the tectum.
    Author: Fujisawa H.
    Journal: J Comp Neurol; 1987 Jun 01; 260(1):127-39. PubMed ID: 3597831.
    Abstract:
    Retinal axons of Xenopus tadpoles at various stages of larval development were filled with horseradish peroxidase (HRP), and their trajectories and the patterns of branching within the tectum were analyzed in wholemount preparations. To clarify temporal and spatial modes of growth of retinal axons during larval development, special attention was directed to labeling a restricted regional population of retinal axons with HRP, following reported procedures (H. Fujisawa, K. Watanabe, N. Tani, and Y. Ibata, Brain Res. 206:9-20, 1981; 206:21-26, 1981; H. Fujisawa, Dev. Growth Differ 26:545-553, 1984). In developing tadpoles, individual retinal axons arrived at the tectum, without clear sprouting. Axonal sprouting first began when growing tips of each retinal axon had arrived at the vicinity of its site of normal innervation within the tectum. Thus, the terminals of the newly added retinal axons were retinotopically aligned within the tectum. The retinotopic alignment of the terminals may be due to an active choice of topographically appropriate tectal regions by growth cones of individual retinal axons. The stereotyped alignment of the newly added retinal axons was followed by widespread axonal branching and preferential selection of those branches. Each retinal axon was sequentially bifurcated within the tectum, and old branches that had inevitably been left at ectopic parts of the tectum (owing to tectal growth) were retracted or degenerated in the following larval development. The above mode of axonal growth provides an adequate explanation of cellular mechanisms of terminal shifting of retinal axons within the tectum during development of retinotectal projection. Selection of appropriate branches may also lead to a reduction in the size of terminal arborization of retinal axons, resulting in a refinement in targeting.
    [Abstract] [Full Text] [Related] [New Search]