These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fine mapping of a stripe rust resistance gene YrZM175 in bread wheat.
    Author: Wu J, Xu D, Fu L, Wu L, Hao W, Li J, Dong Y, Wang F, Wu Y, He Z, Si H, Ma C, Xia X.
    Journal: Theor Appl Genet; 2022 Oct; 135(10):3485-3496. PubMed ID: 35986759.
    Abstract:
    A stripe rust resistance gene YrZM175 in Chinese wheat cultivar Zhongmai 175 was mapped to a genomic interval of 636.4 kb on chromosome arm 2AL, and a candidate gene was predicted. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is a worldwide wheat disease that causes large losses in production. Fine mapping and cloning of resistance genes are important for accurate marker-assisted breeding. Here, we report the fine mapping and candidate gene analysis of stripe rust resistance gene YrZM175 in a Chinese wheat cultivar Zhongmai 175. Fifteen F1, 7,325 F2 plants and 117 F2:3 lines derived from cross Avocet S/Zhongmai 175 were inoculated with PST race CYR32 at the seedling stage in a greenhouse, and F2:3 lines were also evaluated for stripe rust reaction in the field using mixed PST races. Bulked segregant RNA-seq (BSR-seq) analyses revealed 13 SNPs in the region 762.50-768.52 Mb on chromosome arm 2AL. By genome mining, we identified SNPs and InDels between the parents and contrasting bulks and mapped YrZM175 to a 0.72-cM, 636.4-kb interval spanned by YrZM175-InD1 and YrZM175-InD2 (763,452,916-764,089,317 bp) including two putative disease resistance genes based on IWGSC RefSeq v1.0. Collinearity analysis indicated similar target genomic intervals in Chinese Spring, Aegilops tauschii (2D: 647.7-650.5 Mb), Triticum urartu (2A: 750.7-752.3 Mb), Triticum dicoccoides (2A: 771.0-774.5 Mb), Triticum turgidum (2B: 784.7-788.2 Mb), and Triticum aestivum cv. Aikang 58 (2A: 776.3-778.9 Mb) and Jagger (2A: 789.3-791.7 Mb). Through collinearity analysis, sequence alignments of resistant and susceptible parents and gene expression level analysis, we predicted TRITD2Bv1G264480 from Triticum turgidum to be a candidate gene for map-based cloning of YrZM175. A gene-specific marker for TRITD2Bv1G264480 co-segregated with the resistance gene. Molecular marker analysis and stripe rust response data revealed that YrZM175 was different from genes Yr1, Yr17, Yr32, and YrJ22 located on chromosome 2A. Fine mapping of YrZM175 lays a solid foundation for functional gene analysis and marker-assisted selection for improved stripe rust resistance in wheat.
    [Abstract] [Full Text] [Related] [New Search]