These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid and sensitive SERS detection of opioids in solutions based on the solid chip Au-coated Si nano-cone array. Author: Zhao L, Yang R, Wei Y, Guo Y, Zhao Q, Zhang H, Cai W. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec 15; 283():121720. PubMed ID: 35987036. Abstract: Rapid and flexible detection or accurate recognition of trace drugs is of great importance in cracking down on drug crimes, but it remains to be expected. Here, a solid chip is presented for the efficient detection and recognition of trace opioids (typically morphine) in aqueous solutions based on surface-enhanced Raman spectroscopy (SERS). Firstly, a Au-coated Si nano-cone array (Au-SNCA) is designed and fabricated via Si-based organic colloidal template etching and Au deposition. This Au-SNCA shows three-dimensional nanostructure with high densities of nanotips and deep nanogaps as well as high structural consistency, which exhibits strong SERS activity to morphine and outstanding stability. Then, such Au-SNCA is used as solid SERS chip to detect morphine in aqueous solutions. It has been demonstrated that using such solid chip, trace morphine in solutions could be recognized and detected within 1 min, and the detection limit is 10-5 mg/mL (∼10 ppb), showing rapid and sensitive detection, which is much better than the previous reports. Meanwhile, the Au-SNCA chip also can be utilized to detect trace morphine in tap water and reservoir water, the recoveries range from 90.4% to 102.4%. Such excellent SERS performance of this Au-SNCA chip is attributed to its special structure which enhances not only local electromagnetic field but also molecular adsorption. The experimental results about the effects of immersion time and concentration show that the adsorption behavior of morphine molecules on such Au-SNCA chip can be explained by the pseudo-second-order kinetic model and Freundlich adsorption mode. Moreover, the Au-SNCA chip is also suitable for the identification of morphine homologues and the broad-spectrum detection of various common drugs. This study presents a practical solid chip and a simple approach for the efficient SERS detection and recognition of trace drugs in solutions. This is of significance to on-site detect drugs in forensic science.[Abstract] [Full Text] [Related] [New Search]