These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC.
    Author: Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P.
    Journal: Mikrochim Acta; 2022 Aug 23; 189(9):340. PubMed ID: 35995957.
    Abstract:
    Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
    [Abstract] [Full Text] [Related] [New Search]