These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phytochemical screening, cytotoxicity assessment and evaluation of in vitro antiplasmodial and in vivo antimalarial activities of Mentha spicata L. methanolic leaf extract.
    Author: Chatterjee A, Singh N, Chanu WK, Singh CB, Nagaraj VA.
    Journal: J Ethnopharmacol; 2022 Nov 15; 298():115636. PubMed ID: 35998785.
    Abstract:
    ETHNOPHARMACOLOGICAL RELEVANCE: Malaria causes extensive morbidity and mortality, and the decreasing efficacy of artemisinin and its partner drugs has posed a serious concern. Therefore, it is important to identify new antimalarials, and the natural compounds from plants provide a promising platform. Mentha spicata L. representing the Lamiaceae family has been used in traditional medicine for various diseases including malaria. AIM OF THE STUDY: This study was aimed at evaluating the antiplasmodial activity of M. spicata methanolic leaf extract using Plasmodium falciparum (Pf) cultures (Pf3D7 and artemisinin (ART)-resistant PfCam3.IR539T strains) and antimalarial activity using Plasmodium berghei (Pb)-infected mice. Dry leaf powder and methanolic leaf extract were examined for in vivo antimalarial activity and the efficacy of oral versus parenteral administration was compared. MATERIALS AND METHODS: Leaves of M. spicata were collected and extracted using 70% methanol in water (v/v). [3H]-hypoxanthine incorporation assays and Giemsa-stained smears were used to assess the in vitro antiplasmodial activity of M. spicata methanolic extract against Pf3D7 and ART-resistant PfCam3.IR539T strains. Cytotoxicity was evaluated in HeLa and HEK-293T cell lines using MTT assays. Hemolysis assays were performed using red blood cells (RBCs). In vivo antimalarial activities of M. spicata dry leaf powder and methanolic leaf extract were examined in P. berghei-infected mice by Rane's curative test and Peters' 4-day suppressive test. RESULTS: Phytochemical screening of M. spicata methanolic leaf extract indicated the presence of reducing sugars, phenolic compounds, flavonoids, glycosides, sterols, saponins, alkaloids, coumarins, tannins, carbohydrates, and proteins. In vitro studies carried out using Pf cultures showed that M. spicata methanolic leaf extract had significant antiplasmodial activity against Pf3D7 cultures with a 50% inhibitory concentration (IC50) of 57.99 ± 2.82 μg/ml. The extract was also effective against ART-resistant PfCam3.IR539T strain with an IC50 of 71.23 ± 3.85 μg/ml. The extract did not show significant in vitro cytotoxicity, hemolysis, and in vivo toxicity. In vivo studies performed using Pb-infected mice treated with M. spicata dry leaf powder and methanolic leaf extract showed ∼50% inhibition in parasite growth at 1500 mg/kg and 1000 mg/kg doses, respectively. There was also a significant delay in the mortality of treated mice. Parenteral administration was found to be appropriate for the in vivo treatment. CONCLUSIONS: Our in vitro and in vivo findings from Pf and Pb parasites suggested the therapeutic potential of M. spicata leaf extract as an antimalarial. M. spicata leaf extract could also inhibit the growth of ART-resistant Pf strain. Further studies on fractionation and active component analysis of M. spicata leaf extract would be required to identify the bioactive phytochemicals having pharmaceutical and therapeutic values. Such efforts would help us in developing new antimalarials to combat malaria.
    [Abstract] [Full Text] [Related] [New Search]