These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loganin attenuates interleukin-1β-induced chondrocyte inflammation, cartilage degeneration, and rat synovial inflammation by regulating TLR4/MyD88/NF-κB. Author: Wan H, Li C, Yang Y, Chen D. Journal: J Int Med Res; 2022 Aug; 50(8):3000605221104764. PubMed ID: 36000146. Abstract: OBJECTIVE: Inflammation plays a crucial part in osteoarthritis (OA) development. This work aimed to explore loganin's role and molecular mechanism in inflammation and clarify its anti-inflammatory effects in OA treatment. METHODS: Chondrocytes were stimulated using interleukin (IL)-1β and loganin at two concentrations (1 μM and 10 μM). Nitric oxide (NO) and prostaglandin E2 (PGE2) expression was assessed. Real-time polymerase chain reaction was used to evaluate inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-6, and tumor necrosis factor (TNF)-α mRNA levels. Western blot was used to investigate TLR4, MyD88, p-p65, and IκB-α expression. p65 nuclear translocation, synovial inflammatory response, and cartilage degeneration were also assessed. RESULTS: Loganin significantly reduced IL-1β-mediated PGE2, NO, iNOS, and COX-2 expression compared with that of the IL-1β stimulation group. The TLR4/MyD88/NF-κB pathway was suppressed by loganin, which decreased inflammatory cytokine (TNF-α and IL-6) levels compared with those of the IL-1β stimulation group. Loganin inhibited IL-1β-mediated NF-κB p65 nuclear translocation compared with that of the IL-1β stimulation group. Loganin partially suppressed cartilage degeneration and the synovial inflammatory response in vivo. CONCLUSION: This work demonstrated that loganin inhibited IL-1β-mediated inflammation in rat chondrocytes through TLR4/MyD88/NF-κB pathway regulation, thereby reducing rat cartilage degeneration and the synovial inflammatory response.[Abstract] [Full Text] [Related] [New Search]