These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estimation of exposure and premature mortality from near-roadway fine particulate matter concentrations emitted by heavy-duty diesel trucks in Beijing.
    Author: Zhang B, Cheng S, Lu F, Lei M.
    Journal: Environ Pollut; 2022 Oct 15; 311():119990. PubMed ID: 36027625.
    Abstract:
    Traffic exhaust is a main source of fine particulate matter (PM2.5) in cities. Heavy-duty diesel trucks (HDDTs), the primary mode of freight transport, contribute significantly to PM2.5, posing a great threat to public health. However, existing research based on dispersion models to simulate pollutant concentrations lacks high-spatiotemporal-resolution emission inventories of HDDTs as input data, and the public health effects of such emissions in different populations have not been thoroughly assessed. To fill this gap, we focused on Beijing as the research area and developed a high-resolution PM2.5 emission inventory for HDDTs based on Global Navigation Satellite System-equipped vehicle trajectory data. We then simulated the fine-scale spatial distribution of diesel-related PM2.5 and assessed the population exposure by integrating the dispersion model and population distributions. Further, we quantified the mortality attributable to noncommunicable diseases (NCDs) plus lower respiratory infections (LRIs) related to PM2.5 emissions from HDDTs. Results showed that 3.3% of Beijing people lived in areas with high PM2.5 HDDT emissions, which were near intercity highways. Furthermore, the estimated number of NCD + LRI annual premature deaths attributed to PM2.5 HDDT emissions in Beijing was 339 (95% CI: 276-401). The NCD + LRI mortality increased with age, and deaths were more frequent in males than females. Our results aid the identification of HDDT PM2.5 emission exposure hotspots for the formulation of effective mitigation measures and provide important insights into the adverse health impacts of HDDT emissions.
    [Abstract] [Full Text] [Related] [New Search]