These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ε-Polylysine-mediated enhancement of the structural stability and gelling properties of myofibrillar protein under oxidative stress. Author: Ma W, Yuan F, Feng L, Wang J, Sun Y, Cao Y, Huang J. Journal: Int J Biol Macromol; 2022 Nov 01; 220():1114-1123. PubMed ID: 36030980. Abstract: The effects of ε-polylysine (ε-PL) at different concentrations (0.005 %, 0.010 %, 0.020 %, and 0.030 %) on the structure and gelling behavior of pork myofibrillar protein (MP) under oxidative stress were explored. The incorporation of ε-PL significantly restrained oxidation-induced sulfhydryl and solubility losses (up to 9.72 % and 41.9 %, respectively) as well as protein crosslinking and aggregation. Compared with the oxidized control, ε-PL at low concentrations (0.005 % - 0.020 %) promoted further unfolding and destabilization of MP, while 0.030 % ε-PL led to refolding of MP and enhanced its thermal stability. The ε-PL-induced physicochemical changes favored the formation of a finer and more homogeneous three-dimensional network structure, therefore obviously enhancing the strength and water-holding capacity (WHC) of thermally induced oxidized MP gels, with the ε-PL at 0.020 % showed the greatest enhancement. This work revealed for the first time that ε-PL can significantly ameliorate the oxidation stability and gel-forming ability of meat proteins.[Abstract] [Full Text] [Related] [New Search]