These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat. Author: Merkulyeva N, Mikhalkin А, Kostareva A, Vavilova T. Journal: J Comp Neurol; 2022 Dec; 530(18):3193-3208. PubMed ID: 36036192. Abstract: The thalamic reticular nucleus receives axons from the thalamic sensory nuclei and the cerebral cortex. The visual part of this nucleus in carnivores is the perigeniculate nucleus located dorsal to the lateral geniculate nucleus. The perigeniculate nucleus participates in the modulation of visual processing and in the transition of synchronized slow rhythmicity during sleep into desynchronized high-frequency activity during arousal and consists of inhibitory neurons. The main neurochemical markers for perigeniculate neurons are glutamic acid decarboxylase and Ca2+ -binding protein parvalbumin. Previous studies of postnatal development focused on the morphological features of the perigeniculate nucleus; however, its neurochemistry remains poorly understood. In this study, we focused on the postnatal development of perigeniculate neurons using immunohistochemical labeling of parvalbumin, two related Ca2+ -binding proteins (calretinin and calbindin), glutamic acid decarboxylase, and a common neuronal protein, NeuN, in kittens that were 0-123 days old and in adult cats. In parallel with the well-known dominant neuronal populations expressing parvalbumin and GAD67 and persisting until adulthood, transient populations expressing calretinin and calbindin were observed. The calbindin-positive neurons were similar to the main perigeniculate population and showed close morphological features and parvalbumin coexpression. In contrast, the calretinin-positive neurons differed in their morphological characteristics and did not express GAD67, thus distinguishing them from the majority of perigeniculate neurons. A possible link between these populations was revealed, and the development of thalamocortical processing is discussed.[Abstract] [Full Text] [Related] [New Search]