These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Electrochemiluminescence of Graphitic Carbon Nitride by Adjustment of Carbon Vacancy for Supersensitive Detection of MicroRNA.
    Author: Liu L, Zhu Y, Wang H, Zhang Y, Chai Y, Yuan R.
    Journal: Anal Chem; 2022 Sep 13; 94(36):12444-12451. PubMed ID: 36037298.
    Abstract:
    Herein, a supersensitive biosensor was constructed by using graphitic carbon nitride with a carbon vacancy (VC-g-C3N4) as an efficient electrochemiluminescence (ECL) emitter for detection of microRNA-21 (miRNA-21). Impressively, VC-g-C3N4 could be prepared by formaldehyde (HCHO)-assisted urea ploycondensation, and the concentration of the carbon vacancy could be controlled by adjusting the dosage of HCHO to improve the ECL performance, in which the carbon vacancy could improve the charge carrier transfer to enhance the conductivity and it also could be used as an electron trap to prevent electrode passivation and facilitate the adsorption of coreactant S2O82- to accelerate its reduction. Compared with original g-C3N4, the introduction of carbon vacancies resulted in a significant enhancement of the ECL efficiency of VC-g-C3N4. With the aid of improved cascade strand displacement amplification (IC-SDA), the ECL biosensor realized sensitive detection of miRNA-21 with a low detection limit of 3.34 aM. This successful strategy promoted the development of g-C3N4 in the ECL field to construct the sensitive biosensor for molecular and disease diagnoses.
    [Abstract] [Full Text] [Related] [New Search]