These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneously enhanced energy density and discharge efficiency of (Na0.5Bi0.5)0.7Sr0.3TiO3-La1/3(Ta0.5Nb0.5)O3 lead-free energy storage ceramics via grain inhibition and dielectric peak flattening engineering.
    Author: Wang Y, Chen Y, Zhao D, Wang H, Zheng Q, Fan G, He X, Lin D.
    Journal: Dalton Trans; 2022 Sep 20; 51(36):13867-13877. PubMed ID: 36040115.
    Abstract:
    Energy storage ceramics are widely favored for their rapid charging/discharging speed, good temperature stability and large power density. Nevertheless, most lead-free energy storage ceramics can achieve excellent energy storage density (Wt) only under extremely high breakdown electric field and usually possess inferior efficiency (η). In this research, neoteric (1 - x)(Na0.5Bi0.5)0.7Sr0.3TiO3-xLa1/3(Ta0.5Nb0.5)O3 (NBST-xLTN) ceramics were designed by grain inhibition and dielectric peak flattening engineering to enhance Wt and η simultaneously under a low electric field (≤150 kV cm-1). In particular, in one aspect, multiple co-doping of the elements La3+, Ta5+ and Nb5+ as excellent grain growth inhibitors reduces the concentration of oxygen vacancies and refines the grain size to increase the breakdown strength. In another aspect, partial ion substitution in the A/B sites of BNST ceramics breaks the ferroelectric long-range order to generate polar nanoregions, resulting in a remarkable decrease in remanent polarization. Moreover, the incorporation of LTN distorts the lattice, causing a shift towards room temperature and flattening of dielectric peaks to promote the temperature/frequency stabilities significantly. Ultimately, the ultrahigh η of 92.49%, promising Wt of 2.09 J cm-3 and large Wrec of 1.94 J cm-3 under 148 kV cm-1 are achieved concurrently accompanied by the optimistic temperature, frequency and cyclic stabilities in the BNST-0.025LTN ceramic. Besides, outstanding power and current densities (PD and CD) of 67.86 MW cm-3 and 848.29 A cm-2 are procured in the BNST-0.025LTZ ceramic under a low electric field of 160 kV cm-1. The present strategies of grain inhibition and dielectric peak flattening engineering provide an effective approach to exploit novel lead-free ceramics with excellent energy storage properties.
    [Abstract] [Full Text] [Related] [New Search]