These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus.
    Author: Chen W, Zhang Y, Lai Q, Li Y, Liu Z.
    Journal: Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6733-6743. PubMed ID: 36058939.
    Abstract:
    Rapid and accurate detection and identification of Staphylococcus aureus (S. aureus) are of great significance for food safety, environmental monitoring, early clinical diagnosis, and prevention of the spread of drug-resistant bacteria. Herein, we design a fluorometric aptasensor for ultra-sensitive, specific, and rapid detection of S. aureus. The apasensor combines the enrichment and separation of magnetic nanoparticles (MNPs), the biotin-streptavidin conjugation system, and a single S. aureus can release four signaling probes for signal amplification. Aptamer acts as a specific biorecognition element of S. aureus. Four FAM-labeled partially complementary sequences (FAM-pcDNAs) were used as signaling probes. The aptamers were sequential hybridized with the four FAM-pcDNAs to form aptamer&pcDNAs, which were then bound to MNPs via the biotin-streptavidin. When the aptamer specifically recognizes and binds to S. aureus, the FAM-pcDNAs signaling probes are replaced and released into the supernatant. The concentration of S. aureus can be quantified by measuring the fluorescence intensity (λexc/em = 492/520 nm) of the replaced signaling probe FAM-pcDNAs. The results show that the proposed fluorometric aptasensor displays good specificity, ultra-high sensitivity (1.23 cfu/mL), wide linear range (1 ~ 108 cfu/mL), and fast detection speed (~ 1.5 h). The recovery test verifies further that the proposed fluorometric aptasensor can detect S. aureus in spiked blood samples. Since aptamers are easy to customize, we believe that fluorometric aptasensors based on multiple amplification have broad prospects in the construction of practical high-performance biosensors for bacterial detection. KEY POINTS: • Multiple amplification-based fluorometric aptasensor for S. aureus is developed • The aptasensor displays high specificity with a LOD of 1.23 CFU/mL • The aptasensor can directly detect S. aureus in spiked blood samples.
    [Abstract] [Full Text] [Related] [New Search]