These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Supportive effect of naringenin on NaCl-induced toxicity in Carthamus tinctorius seedlings. Author: Hatamipoor S, Shabani L, Farhadian S. Journal: Int J Phytoremediation; 2023; 25(7):889-899. PubMed ID: 36062912. Abstract: In the present study, we used exogenous naringenin (0.5 mM) pretreatment before the stress (25 mM NaCl) on the growth and tolerance of safflower seedlings under non-salinity conditions and salinity conditions. Our results showed that salinity treatment significantly declined the biomass, leaf relative water content, chlorophyll content, K+ content, and K+/Na+ ratio by 28%, 28%, 12%, 36%, and 56%, respectively, as compared to untreated control. The results obtained in the present study showed the beneficial effects of the pretreatment of naringenin in safflower seedlings under non-salinity conditions concerning increasing plant biomass, total phenolic compound, radical scavenging activity (RSA), soluble sugar content, proline, glutathione, enzymatic antioxidants, and K+ content. Nevertheless, naringenin pretreated plants showed a clear increment in the values of biomass, RSA, total phenolic compound, and catalase enzyme activity parameters under salinity stress. Salinity stress caused ionic phytotoxicity and oxidative stress by enhancing Na+ content, H2O2 accumulation, malondialdehyde (MDA), and antioxidants. However, naringenin alleviated salt-induced oxidative stress by decreasing H2O2 and MDA content in the leaves and improving the catalase activity in treated plants. Generally, it could be concluded pretreatment of naringenin before stress could partly diminish NaCl-caused oxidative stress in safflower seedlings, probably due to improvement in enzymatic and non-enzymatic antioxidants and reduced cell membrane damage. We report for the first time that applying exogenous naringenin pretreatment before the stress could improve growth and diminish NaCl-caused oxidative stress in safflower seedlings, probably due to the improvement in enzymatic and non-enzymatic antioxidants and reduced cell membrane damage. This implies that applying exogenous naringenin pretreatment before the stress is a promising approach for sustainable crop production under salinity stress.[Abstract] [Full Text] [Related] [New Search]