These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anchoring Oxidized MXene Nanosheets on Porous Carbon Nanotube Sponge for Enhancing Ion Transport and Pseudocapacitive Performance.
    Author: Yang R, Hu Q, Yang S, Zeng Z, Zhang H, Cao A, Gui X.
    Journal: ACS Appl Mater Interfaces; 2022 Sep 21; 14(37):41997-42006. PubMed ID: 36070442.
    Abstract:
    Two-dimensional (2D) MXene nanosheets are attractive for electrochemical energy storage applications due to their superior surface-controlled charge storage capacity. However, the slow ion transport in the closely packed electrode limits their electrochemical performances. Meanwhile, the restricted surface-controlled pseudocapacitance of MXene nanosheets requires to be enhanced. Herein, a well-controlled electrophoretic deposition strategy is developed to disperse Ti3C2Tx nanosheets into a freestanding, porous carbon nanotube (CNT) sponge. The constructed Ti3C2Tx@CNT hybrid sponge can provide high-speed ion-transport pathways for the charge-discharge process. Furthermore, by tuning the deposition potential, the inserted MXene nanosheets can be partially oxidized, boosting the pseudocapacitance performance. A large gravimetric capacitance of 468 F g-1 at 10 mV s-1 and a retention of 79.8% at 100 mV s-1 can be achieved in the Ti3C2Tx@CNT electrode. Meanwhile, the highest areal capacitance of 661 mF cm-2 at 1 mA cm-2 was obtained in the sample with high-loading Ti3C2Tx. For the assembled symmetric supercapacitor, 92.8% of the capacitance is retained after 10 000 cycles of the charge-discharge process at 10 mA cm-2. Thus, this study develops a promising electrophoretic deposition strategy for dispersing 2D MXene nanosheets and boosting their pseudocapacitive performance, resulting in a high-capacitive electrochemical energy storage electrode.
    [Abstract] [Full Text] [Related] [New Search]