These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Innovative natural antimicrobial natamycin incorporated titanium dioxide (nano-TiO2)/ poly (butylene adipate-co-terephthalate) (PBAT) /poly (lactic acid) (PLA) biodegradable active film (NTP@PLA) and application in grape preservation.
    Author: Zheng Y, Jia X, Zhao Z, Ran Y, Du M, Ji H, Pan Y, Li Z, Ma X, Liu Y, Duan L, Li X.
    Journal: Food Chem; 2023 Jan 30; 400():134100. PubMed ID: 36075172.
    Abstract:
    Poly (butylene adipate-co-terephthalate) (PBAT)/polylactic acid (PLA) blended with compatibilizers (polycaprolactone, PCL; poly (ethylene glycol), PEG; titanium dioxide, nano-TiO2) (TP@PLA composites) were developed by melt processing. Natamycin incorporated into TP@PLA blend composites formed NTP@PLA films, which exhibited high tensile strength (24.1-43.5 MPa) and elongation at break (85.8-258.2 %), and exhibited good oxygen permeability, water vapor permeability, surface hydrophobicity and biodegradability. The in vitro results revealed that inhibition of Penicillium expansum cell growth of the NTP@PLA films with addition of 1.0 wt% natamycin reached 95.72 %. The NTP@PLA film with natamycin effectively reduced incidence of decay (1.52 %) on grapes, maintained their quality, and inhibited the growth of pathogenic fungi to up to 0.42 log cfu·g-1. This study generates new insights into the preservation properties of antimicrobial NTP@PLA film, which endow it with great application potential as a novel and eco-friendly packaging material for the food industry.
    [Abstract] [Full Text] [Related] [New Search]