These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: (20S) Ginsenoside Rh2-Activated, Distinct Apoptosis Pathways in Highly and Poorly Differentiated Human Esophageal Cancer Cells.
    Author: Li H, Han C, Chen C, Han G, Li Y.
    Journal: Molecules; 2022 Aug 31; 27(17):. PubMed ID: 36080369.
    Abstract:
    Ginsenoside Rh2 (G-Rh2), a rare ginsenoside isolated from red ginseng, has considerable anti-cancer activity and induces apoptosis in a variety of cancer cells, but its activity in esophageal cancer cells is unclear. In this study, we examined the cytotoxic activity of (20S) G-Rh2 in highly differentiated esophageal squamous ECA109 cells and poorly differentiated esophageal squamous TE-13 cells. (20S) G-Rh2 exerted intense cytotoxicity in ECA109 and TE-13 cells with an IC50 of 2.9 and 3.7 μg/mL, respectively. After treatment with G-Rh2, Bcl-2, and Bcl-xL, the two main anti-apoptosis Bcl-2 family proteins upregulated, and Bax and Bak, the two key pro-apoptosis proteins translocated to mitochondria in both cell lines. At the same time, cytochrome c and Smac released from mitochondria, followed by caspase-9 activation, indicating that a mitochondria-mediated intrinsic apoptosis pathway was activated in both cell lines upon treatment with (20S) G-Rh2. It is noteworthy that (20S) G-Rh2 upregulated the transcription and protein expression of two death receptors, Fas and DR5, and subsequently activated Caspase-8 in the TE-13 cells but not in the ECA109 cells. Taken together, we demonstrated the potent anti-esophageal cancer cell activity of (20S) G-Rh2 and showed its working mechanism in two differentiated esophageal cancer cells, which can provide important evidence for developing an effective strategy for anti-esophageal cancer treatment.
    [Abstract] [Full Text] [Related] [New Search]