These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unity Human Eye Model for Gaze Tracking with a Query-Driven Dynamic Vision Sensor. Author: Tang S, Wang K, Ogrey S, Villazon J, Khan S, Paul A, Ardolino N, Kubendran R, Cauwenberghs G. Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2194-2198. PubMed ID: 36085625. Abstract: Objective measurement of gaze pattern and eye movement during untethered activity has important applications for neuroscience research and neurological disease detection. Current commercial eye-tracking tools rely on desk-top devices with infrared emitters and conventional frame-based cameras. Although wearable options do exist, the large power-consumption from their conventional cameras limit true long-term mobile usage. The query-driven Dynamic Vision Sensor (qDVS) is a neuromorphic camera which dramatically reduces power consumption by outputting only intensity-change threshold events, as opposed to full frames of intensity data. However, such hardware has not yet been implemented for on-body eye-tracking, but the feasibility can be demonstrated using a mathematical simulator to evaluate the eye-tracking ca-pabilities of the qDVS under controlled conditions. Specifically, a framework utilizing a realistic human eye model in the 3D graphics engine, Unity, is presented to enable the controlled and direct comparison of image-based gaze tracking methods. Eye-tracking based on qDVS frames was compared against two different conventional frame eye-tracking methods - the traditional ellipse pupil-fitting algorithm and a deep learning neural network inference model. Gaze accuracy from qDVS frames achieved an average of 93.2% for movement along the primary horizontal axis (pitch angle) and 93.1 % for movement along the primary vertical axis (yaw angle) under 4 different illumination conditions, demonstrating the feasibility for using qDVS hardware cameras for such applications. The quantitative framework for the direct comparison of eye tracking algorithms presented here is made open-source and can be extended to include other eye parameters, such as pupil dilation, reflection, motion artifact, and more.[Abstract] [Full Text] [Related] [New Search]