These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preclinical Evaluation of Foamy Virus Vector-Mediated Gene Addition in Human Hematopoietic Stem/Progenitor Cells for Correction of Leukocyte Adhesion Deficiency Type 1. Author: Smith RH, Bloomer H, Fink D, Keyvanfar K, Nasimuzzaman M, Sancheznieto F, Dutta R, Guenther Bui K, Alvarado LJ, Bauer TR, Hickstein DD, Russell DW, Malik P, van der Loo JCM, Highfill SL, Kuhns DB, Pirooznia M, Larochelle A. Journal: Hum Gene Ther; 2022 Dec; 33(23-24):1293-1304. PubMed ID: 36094106. Abstract: Ex vivo gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the β2 integrin common chain, CD18. CD34+ HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene. LAD-1-associated cellular chemotactic defects were ameliorated in transgene-positive, myeloid-differentiated LAD-1 cells assayed in response to a strong neutrophil chemoattractant in vitro. Xenotransplantation of vector-transduced LAD-1 HSPCs in immunodeficient (NSG) mice resulted in long-term (∼5 months) human cell engraftment within murine bone marrow. Moreover, engrafted LAD-1 myeloid cells displayed in vivo levels of transgene marking previously reported to ameliorate the LAD-1 phenotype in a large animal model of the disease. Vector insertion site analysis revealed a favorable vector integration profile with no overt evidence of genotoxicity. These results coupled with the unique biological features of wild-type foamy virus support the development of FVVs for ex vivo gene therapy of LAD-1.[Abstract] [Full Text] [Related] [New Search]