These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermal behavior of natural stellerite: high-temperature X-ray powder diffraction and IR spectroscopy study.
    Author: Kaneva E, Shendrik R.
    Journal: Anal Sci; 2022 Dec; 38(12):1523-1532. PubMed ID: 36094727.
    Abstract:
    The thermal behavior of stellerite from the Savinskoye deposit (Transbaikalia, Russia), Ca7.69Na0.25K0.06(Si56.24Al15.76)O144·53.39H2O, was investigated by in situ high-temperature X-ray powder diffraction (HTXRPD) and ex situ HT infrared (IR) spectroscopic analysis. Four different HTXRPD experimental procedures were used to study the thermal behavior of the powder samples: (1) RT-750 °C, (2) RT-220 °C -RT, (3) 200-350-RT °C, and (4) 350-700 °C. Electron probe microanalysis and single-crystal X-ray diffraction were preliminary used to determine the chemical composition and crystal structure of stellerite. The A → B phase transition (Fmmm → Amma) starts at ∼110 °C and is completed at about 140 °C (in situ HTXRPD) and 200 °C (ex situ HTIR) depending on the experimental conditions. It involves a cell volume decrease of 5.8% (Experiment 1). The thermal expansion of stellerite is more pronounced along the b and c axes, with αa: αb: αc (× 10-5) = 2.50:-25.52:-6.84 at 100 °C, 0.44:-21.75:-25.64 at 150 °C after the completion of the phase transition, and 3.06:-1.86:-16.94 at 500 °C. The reverse B → A transition occurs at temperatures below 100 °C during slow cooling (Experiment 2), however, it does not occur upon rapid cooling (Experiment 3). The B → D phase transition above 300 °C is not observed (Experiment 4). The temperature barrier of phase transition in the ex situ HTIR spectroscopy experiment is shifted towards high temperatures. The heating above 200 °C leads to an increase of 3430 cm-1 and a decrease of 3600 and 3260 cm-1 bands, which correspond to the stretching vibration of H2O. The heating above 400 °C causes complete dehydration of the stellerite.
    [Abstract] [Full Text] [Related] [New Search]