These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dipole-Bound State, Photodetachment Spectroscopy, and Resonant Photoelectron Imaging of Cryogenically-Cooled 2-Cyanopyrrolide.
    Author: Yuan DF, Zhang YR, Wang LS.
    Journal: J Phys Chem A; 2022 Sep 22; 126(37):6416-6428. PubMed ID: 36097646.
    Abstract:
    Valence-bound anions with polar neutral cores can have diffuse dipole-bound excited states just below the electron detachment threshold. Because of the similarity in geometry and vibrational frequencies between the dipole-bound states (DBSs) and the corresponding neutrals, DBSs have been exploited as intermediate states to conduct resonant photoelectron spectroscopy (PES), resulting in highly non-Franck-Condon photoelectron spectra via vibrational autodetachment and providing much richer vibrational information than conventional PES. Here, we report a photodetachment and high-resolution photoelectron imaging study of the 2-cyanopyrrolide anion, cooled in a cryogenic ion trap. The electron affinity of the 2-cyanopyrrolyl radical is measured to be 3.0981 ± 0.0006 eV (24 988 ± 5 cm-1). A DBS is observed for 2-cyanopyrrolide at 240 cm-1 below its detachment threshold using photodetachment spectroscopy. Twenty-three above-threshold vibrational resonances (Feshbach resonances) of the DBS are observed. Resonant PES is conducted at each Feshbach resonance, yielding a wealth of vibrational information about the 2-cyanopyrrolyl radical. Resonant two-photon PES confirms the s-like dipole-bound orbital and reveals a relatively long lifetime of the bound zero-point level of the DBS. Fundamental frequencies for 19 vibrational modes (out of a total of 24) are obtained for the cyanopyrrolyl radical, including six out-of-plane modes. The current work provides important spectroscopic information about 2-cyanopyrrolyl, which should be valuable for the study of this radical in combustion or astronomical environments.
    [Abstract] [Full Text] [Related] [New Search]