These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wavefront aberrometry repeatability and agreement-A comparison between Pentacam AXL Wave, iTrace and OPD-Scan III. Author: Wan KH, Liao XL, Yu M, Tsui RWY, Chow VWS, Chong KKL, Chan TCY. Journal: Ophthalmic Physiol Opt; 2022 Nov; 42(6):1326-1337. PubMed ID: 36102169. Abstract: INTRODUCTION: To compare intrasession agreement and repeatability of wavefront aberration measurements from three different aberrometers obtained using Hartmann-Shack, ray tracing and automated retinoscopy methods, as well as their interdevice agreement. METHODS: Three consecutive measurements were obtained using the Pentacam AXL Wave, the iTrace and the OPD-Scan III in 47 eyes of 47 patients. Wavefront refractions, root mean square of total aberrations (RMS total), RMS of higher-order aberrations (HOA) and second-, third- and fourth-order HOAs were exported for 4-mm pupils. Wavefront refractions were converted into vector components: M, J0 and J45 . Intrasession agreement and repeatability were evaluated using intraclass correlation coefficients (ICCs) and repeatability coefficients (RCs); interdevice agreement was assessed using the Bland-Altman method. RESULTS: The intrasession agreement and repeatability of RMS HOA were comparable between the three devices; both the Pentacam AXL Wave and the OPD-Scan III had better intrasession agreement and repeatability for the RMS total than the iTrace (p ≤ 0.02). Intrasession repeatability for the majority of second- and third-order aberrations was better on the Pentacam AXL Wave than on the iTrace (p ≤ 0.01) and OPD-Scan III (p ≤ 0.04), although their agreement and repeatability in spherical aberration were comparable (p ≥ 0.24). Significant systematic differences and proportional bias were detected for almost all refraction power vectors and Zernike coefficients among the three devices. CONCLUSIONS: In this study, all three devices provided good-to-excellent agreement for aberration measurements. Most of the individual Zernike's components were not exchangeable between different aberrometers. Their relative intrasession performance in agreement and repeatability varied significantly across different ocular aberration parameters.[Abstract] [Full Text] [Related] [New Search]