These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography. Author: Zhang Y, Ren X, Liang X, Ye X, Zhou C. Journal: IEEE J Biomed Health Inform; 2022 Dec; 26(12):5907-5917. PubMed ID: 36103444. Abstract: This study proposed a refined BP prediction strategy that using single-channel photoplethysmography (PPG) signals to stratify populations by cardiovascular status before BP estimation. Combining demographic characteristics (age, gender) and pulse wave morphological features, the random forest was applied to screen two kinds of typical cardiovascular diseases (CVDs), with an accuracy of 92.2%. A deep learning model (BiLSTM-At) was proposed to estimate the long-term BP trend for different CVD groups. Transfer learning technique was used for personalized modeling to reduce computational complexity while improving performance. The method was validated on 255 patients with different CVDs. The mean absolute errors (MAEs) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimation were 2.815 mmHg and 1.876 mmHg for normal subjects, 3.024 mmHg and 1.334 mmHg for AF subjects, and 4.444 mmHg and 2.549 mmHg for CA subjects. The results met the American Association for the Advancement of Medical Instrumentations (AAMI) and British Hypertension Society (BHS) Class A criteria. This indicated that our strategy has good performance and can realize long-term monitoring of BP through a small batch samples, with the potential to implement real-time monitoring in healthy devices.[Abstract] [Full Text] [Related] [New Search]