These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In situ anchor of multi-walled carbon nanotubes into iron-based metal-organic frameworks for enhanced adsorption of polycyclic aromatic hydrocarbons by magnetic solid-phase extraction.
    Author: Yang J, Zhang X, Wang X, Wang H, Zhao J, Zhou Z, Du X, Lu X.
    Journal: J Chromatogr A; 2022 Oct 11; 1681():463459. PubMed ID: 36108351.
    Abstract:
    In this work, a magnetic MIL-101(γ-Fe2O3)/MWCNTs composite derived from iron-based metal-organic frameworks (MIL-101(Fe)) with multi-walled carbon nanotubes (MWCNTs) was successfully synthesized by low-temperature calcination process. The composite was used as adsorbent of magnetic solid-phase extraction (MSPE) for enhanced and rapid enrichment of trace polycyclic aromatic hydrocarbons (PAHs) based on its strong π-π stacking interactions, hydrophobic and cationic-π stacking interactions. The pseudo-second-order kinetic model and Langmuir isotherm model could be applied to better describe the adsorption process. The maximum adsorption capacity for PAHs reached 93.9 mg g-1. In addition, the conditions of MSPE process were optimized by orthogonal array design (OAD). A MSPE-HPLC-UV method was established for the sensitive detection of PAHs in real water samples and exhibited wide linear range (0.05-1000 µg L-1), low detection limits (0.02-0.41 µg L-1) and high enrichment factors (44-169) for PAHs. The relative standard deviations (RSD) ranged from 0.8 to 4.0% and 1.2-7.2% for single batch and batch-to-batch, respectively, and the spiked recoveries at two levels of 10 and 50 µg L-1 ranged from 79.6 to 112% with RSD of less than 5.81%. The unique MWCNTs in situ anchor MIL-101(γ-Fe2O3) composite with an outstanding PAHs adsorption performance provides a new opportunity and promising application in removal of toxic pollutants.
    [Abstract] [Full Text] [Related] [New Search]