These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetic and electrophoretic analysis of transmethylation reactions in intact Xenopus laevis oocytes.
    Author: O'Connor CM, Germain BJ.
    Journal: J Biol Chem; 1987 Jul 25; 262(21):10404-11. PubMed ID: 3611067.
    Abstract:
    Transmethylation reactions in fully grown Xenopus oocytes were analyzed following the microinjection of S-adenosyl-L-[methyl-3H]methionine (AdoMet). The size of the endogenous AdoMet pool, measured by cation exchange high pressure liquid chromatography is 5.91 pmol/oocyte. The AdoMet pool turns over with a half-time of 2 h, at a rate of 2.07 pmol/h/oocyte. Fractionation experiments indicate that approximately one-third of the AdoMet in oocytes is utilized for protein carboxylmethylation reactions and another third is metabolized into small molecules which are secreted. The remainder of the intracellular AdoMet is used primarily for protein N-methylation reactions, although some methylation of phospholipids and nucleic acids also occurs. Polyacrylamide gel electrophoresis of 3H-methylated proteins at pH 2.4 in the presence of sodium dodecyl sulfate demonstrated that methyl esters are associated with a heterogeneous group of proteins in both the nucleus and cytoplasm of oocytes, coincident with the subcellular distribution of the protein D-aspartyl, L-isoaspartyl methyl transferase (O'Connor, C. M. (1987) J. Biol. Chem. 262, 10398-10403). The protein methyl esters associated with oocyte proteins turn over rapidly, as evidenced from the presence of [3H]methanol in the medium. The calculated rate of protein carboxyl methylation, 0.7 pmol/h/oocyte, is similar to that of protein synthesis in oocytes, suggesting that the modification of derivatized aspartyl residues represents a major pathway in oocyte protein metabolism. Since the formation of protein methyl esters is unaffected by cycloheximide, it is unlikely that methyl-accepting sites on oocyte proteins arise primarily from errors in protein synthesis. Unlike protein carboxyl methylation reactions, protein N-methylation reactions are closely linked to protein synthesis, and the methyl group linkages are stable over a period of at least 4 h. Numerous protein acceptors for N-methylation reactions were identified by polyacrylamide gel electrophoresis.
    [Abstract] [Full Text] [Related] [New Search]