These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calorimetric studies of oxygen and carbon monoxide binding to human hemoglobin. Sequential binding heats for oxygen. Author: Parody-Morreale A, Robert CH, Bishop GA, Gill SJ. Journal: J Biol Chem; 1987 Aug 15; 262(23):10994-9. PubMed ID: 3611101. Abstract: Two high precision techniques, titration microcalorimetry and thin-layer optical binding measurements, have made possible the evaluation of enthalpy changes for the overall oxygenation reactions for human hemoglobin (HbAo). Although the heat of adding three oxygen molecules could not be evaluated due to the indeterminate contribution of this species to the oxygen binding curve of the protein (Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., and Robert, C. H. (1987) Biochemistry, 26, 3995-4002), the heats for binding two and four oxygen molecules were found to be simple multiples of the first binding heat. A direct consequence of equal stepwise heats is invariance of the shape of the binding curve with temperature, as pointed out by Wyman (Wyman, J. (1939) J. Biol. Chem. 127, 581-599). Titration microcalorimetry was also performed for the binding of carbon monoxide to hemoglobin. While the tight binding of CO precludes high-precision binding measurements, it does allow one to accurately determine the heat of ligation as a function of the CO bound. In these titrations a uniform heat of reaction is not observed, but the heat of binding increases markedly near the end point. This implies that the stepwise binding enthalpy for adding the third CO molecule is anomalously endothermic and for adding the fourth strongly exothermic. A similar phenomenon cannot be ruled out in the case of oxygen because of imprecision intrinsic in the analysis of the weaker ligand binding.[Abstract] [Full Text] [Related] [New Search]