These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. Author: Deng YF, Zan FX, Huang H, Wu D, Tang WT, Chen GH. Journal: Water Res; 2022 Oct 01; 224():119051. PubMed ID: 36113234. Abstract: Anoxic ammonium oxidation (anammox) is an energy-efficient nitrogen removal process for wastewater treatment. However, the unstable nitrite supply and residual nitrate in the anammox process have limited its wide application. Recent studies have proven coupling of sulfur-based denitrification with anammox (SDA) can achieve an effective nitrogen removal, owing to stable provision of substrate nitrite from the sulfur-based denitrification, thus making its process control more efficient in comparison with that of partial nitrification and anammox process. Meanwhile, the anammox-produced nitrate can be eliminated through sulfur-based denitrification, thereby enhancing SDA's overall nitrogen removal efficiency. Nonetheless, this process is governed by a complex microbial system that involves both complicated sulfur and nitrogen metabolisms as well as multiple interactions among sulfur-oxidising bacteria and anammox bacteria. A comprehensive understanding of the principles of the SDA process is the key to facilitating the development and application of this novel process. Hence, this review is conducted to systematically summarise various findings on the SDA process, including its associated biochemistry, biokinetic reactions, reactor performance, and application. The dominant functional bacteria and microbial interactions in the SDA process are further discussed. Finally, the advantages, challenges, and future research perspectives of SDA are outlined. Overall, this work gives an in-depth insight into the coupling mechanism of SDA and its potential application in biological nitrogen removal.[Abstract] [Full Text] [Related] [New Search]