These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding. Author: Lee JH, Kim YS, Ru HJ, Lee SY, Park SJ. Journal: Nanomicro Lett; 2022 Sep 17; 14(1):188. PubMed ID: 36114884. Abstract: Epoxy-based nanocomposites can be ideal electromagnetic interference (EMI)-shielding materials owing to their lightness, chemical inertness, and mechanical durability. However, poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications, such as smart wristband, medical cloth, aerospace, and military equipment. In this study, we explored hybrid nanofillers of single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (rGO) as conductive inks and polyester fabrics (PFs) as a substrate for flexible EMI-shielding composites. The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m-1 and 38.5 MPa m1/2, which are ~ 270 and 65% enhancement over those of the composites without SWCNTs, respectively. Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test. An EMI-shielding effectiveness of ~ 41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient. These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks, leading to superior EMI-shielding performance. We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.[Abstract] [Full Text] [Related] [New Search]