These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organ blood flow and brown adipose tissue oxygen consumption during noradrenaline-induced nonshivering thermogenesis in the Djungarian hamster.
    Author: Puchalski W, Böckler H, Heldmaier G, Langefeld M.
    Journal: J Exp Zool; 1987 Jun; 242(3):263-71. PubMed ID: 3612050.
    Abstract:
    During NA-induced NST blood flow through BAT increased from 0.18 ml min-1 to 3.21 ml min-1 in 23 degrees C acclimated (equals thermoneutrality) and from 0.61 ml min-1 to 9.67 ml min-1 in outdoors (-2 to 12 degrees C Ta) acclimated Djungarian hamsters. In 23 degrees C acclimated hamsters this increase was accomplished by a diversion of blood flow from visceral organs without a change in cardiac output (19.7 versus 20.5 ml min-1 before and after NA). In outdoors acclimated hamsters we also observed a redistribution of blood flow from the viscera to BAT. In addition, cardiac output increased from 24.3 to 38.8 ml min-1. Metabolic rate of BAT in situ was determined from organ blood flow and the (A-V)O2 of blood across the interscapular BAT. BAT of outdoor acclimated hamsters showed a significantly higher metabolism in comparison to 23 degrees C acclimated hamsters (81.1 versus 30.4 mlO2h-1). Furthermore, this calculation revealed that 28% (23 degrees C acclimated hamsters) and 61% (outdoors acclimated hamsters) of total NST were located in BAT of Phodopus sungorus.
    [Abstract] [Full Text] [Related] [New Search]