These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ru-Doping-Induced Spin Frustration and Enhancement of the Room-Temperature Anomalous Hall Effect in La2/3 Sr1/3 MnO3 Films. Author: Hua E, Si L, Dai K, Wang Q, Ye H, Liu K, Zhang J, Lu J, Chen K, Jin F, Wang L, Wu W. Journal: Adv Mater; 2022 Nov; 34(47):e2206685. PubMed ID: 36120849. Abstract: In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, Ru-doping-enhanced AHE in La2/3 Sr1/3 Mn1-x Rux O3 epitaxial films is exploited. As the B-site Ru doping level increases up to 20%, the anomalous Hall resistivity at room temperature can be enhanced from nΩ cm to µΩ cm scale. Ru doping leads to strong competition between the ferromagnetic double-exchange interaction and the antiferromagnetic superexchange interaction. The resultant spin frustration and spin-glass state facilitate a strong skew-scattering process, thus significantly enhancing the extrinsic AHE. The findings can pave a feasible approach for boosting the controllability and reliability of oxide-based spintronic devices.[Abstract] [Full Text] [Related] [New Search]