These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment.
    Author: Liu Q, Liu Y, Feng Q, Chen C, Xu Z.
    Journal: J Hazard Mater; 2023 Jan 05; 441():129965. PubMed ID: 36122524.
    Abstract:
    Oil spills frequently occur in the ocean, and adsorption is one of the effective ways to deal with oil spills. Compared with other adsorbent materials, biomass aerogel has superior selective adsorption capacity. CNF/SA aerogels with good mechanical properties (340 kPa at 90 % strain) and high adsorption capacity (88.91 g/g) were prepared by mixing cellulose nanofibers (CNF) with sodium alginate (SA) through bidirectional freeze-drying, ionic crosslinking, and surface modification to effectively solve the ocean oil spill problem. The bidirectional freeze-drying technology is a green and efficient technique for preparing layered microstructured composite aerogels. The prepared aerogels have a three-dimensional interpenetrating lamellar structure, low density (24.2 mg/cm3), high porosity (97.85 %), and high hydrophobicity (WCA = 144.5°), can be calibrated and used repeatedly. It has potential applications in water-oil separation and can be used as an absorbent for effectively treating oil spills in the ocean environment.
    [Abstract] [Full Text] [Related] [New Search]