These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasonic-assisted preparation of interlaced layered hydrotalcite (U-Fe/Al-LDH) for high-efficiency removal of Cr(VI): Enhancing adsorption-coupled reduction capacity and stability.
    Author: Tan X, Zhang Y, Liu M, Cao J, Duan G, Cui J, Lin A.
    Journal: Chemosphere; 2022 Dec; 308(Pt 3):136472. PubMed ID: 36122742.
    Abstract:
    Cr(VI) contamination in aquatic systems has been a challenge for environmental science researchers. To environmental-friendly, stable, and efficiently remove Cr (VI), a novel layered double hydroxide was prepared through the ultrasonic-assisted co-precipitation method. The ultrasonic-assisted step prevented the Fe2+ oxidation, improved the morphology and performance, and finally, the adsorption-coupled reduction capacity and stability were enhanced. By adding U-Fe/Al-LDH (1.0 g/L) for Cr(VI) (100 mg/L), the removal rate reached 82.24%. The removal data were well fitted by the pseudo-second-order kinetic and Langmuir isotherm model. Using U-Fe/Al-LDH can be performed over a wide pH range (2-10), with a theoretical maximum removal capacity of 118.65 mg/g. The Cr(VI) with high toxicity was adsorbed and reduced to low-toxicity Cr(III). In the final phase, stable Cr(III) complex precipitates were generated. After 30 days, the dynamic leaching amounts of total Cr in used U-Fe/Al-LDH-2 were 0.1052 mg/L. Combined with the results of the influence experiment of coexisting anions and oxidants and the SO42- release experiment, the stability of the removal effect and the safety of U-Fe/Al-LDH were proved. In conclusion, U-Fe/Al-LDH-2 is a promising remediation agent and a feasible Cr(VI) removal method for the practical remediation.
    [Abstract] [Full Text] [Related] [New Search]