These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ginsenoside Rh1 protects human endothelial cells against lipopolysaccharide-induced inflammatory injury through inhibiting TLR2/4-mediated STAT3, NF-κB, and ER stress signaling pathways.
    Author: Jin Y, Nguyen TLL, Myung CS, Heo KS.
    Journal: Life Sci; 2022 Nov 15; 309():120973. PubMed ID: 36150463.
    Abstract:
    AIM: Endothelial cell (EC) dysfunction initiates atherosclerosis by inducing inflammatory cytokines and adhesion molecules. Herein, we investigated the role of ginsenoside Rh1 (Rh1) in lipopolysaccharide (LPS)-induced EC dysfunction. MAIN METHODS: The inhibitory effect of Rh1 on LPS binding to toll-like receptor 2 (TLR2) or TLR4 was evaluated using an immunofluorescence (IF) assay. Annexin V and cleaved caspase-3-positive EC apoptosis were evaluated by flow cytometry and IF assay. Western blotting and quantitative reverse transcription-PCR were performed to clarify underlying molecular mechanisms. In vivo model, effect of Rh1 on EC dysfunction was evaluated by using en face IF assay on aortas isolated C57BL/6 mice. KEY FINDING: LPS (500 ng/mL) activated inflammatory signaling pathways, including ERK1/2, STAT3, and NF-κB. Interestingly, Rh1 significantly abolished the binding of LPS to TLR2 and TLR4. Consistently, Rh1 inhibited LPS-induced NF-κB activation and its downstream molecules, including inflammatory cytokines and adhesion molecules. Furthermore, Rh1 alleviated LPS-induced downregulation of eNOS promoter activity. Notably, inactivation of eNOS by 50 μM L-NAME significantly increased NF-κB promoter activity. In addition, Rh1 abolished LPS-mediated cell cycle arrest and EC apoptosis by inhibiting endoplasmic reticulum stress via PERK/CHOP/ERO1-α signaling pathway. Consistent with in vitro experimental data, Rh1 effectively suppressed LPS-induced VCAM-1 and CHOP expression and rescuing LPS-destroyed tight junctions between ECs as indicated in ZO-1 expression on mice aorta. SIGNIFICANCE: Rh1 suppresses LPS-induced EC inflammation and apoptosis by inhibiting STAT3/NF-κB and endoplasmic reticulum stress signaling pathways, mediated by blocking LPS binding-to TLR2 and TLR4. Consistently, Rh1 effectively reduced EC dysfunction in vivo model.
    [Abstract] [Full Text] [Related] [New Search]