These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. Author: Zeng S, Tan W, Si J, Mao L, Shi J, Li Y, Hou X. Journal: J Phys Chem Lett; 2022 Oct 06; 13(39):9096-9102. PubMed ID: 36154010. Abstract: InP/ZnS core/shell quantum dots have shown extraordinary application potential in photocatalysis. In this work, we demonstrated by ultrafast spectroscopy that the electron transfer ability of InP/ZnSe/ZnS core/shell/shell quantum dots was better than that of InP/ZnS quantum dots, because the introduction of ZnSe midshell resulted in improved passivation and greater exciton delocalization. The temperature-dependent PL spectra indicate that the exciton-phonon coupling strength and exciton binding energy of InP/ZnSe/ZnS quantum dots are smaller than those of InP/ZnS quantum dots. Further photocatalytic hydrogen evolution testing revealed that the photocatalytic activity of InP/ZnSe/ZnS quantum dots was significantly higher than that of InP/ZnS quantum dots, and InP/ZnSe/ZnS quantum dots even demonstrated improved stability. This research deepened our understanding of carrier dynamics and charge separation of InP/ZnSe/ZnS quantum dots, especially highlighting the application potential of InP/ZnSe/ZnS quantum dots in photocatalytic hydrogen evolution.[Abstract] [Full Text] [Related] [New Search]