These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transparent Nanocomposites Comprising Ligand-Exchanged CuInS2/ZnS Quantum Dots and UV-Cured Resin for Wavelength Converters. Author: Shiraishi M, Iso Y, Isobe T. Journal: ACS Omega; 2022 Sep 20; 7(37):33039-33045. PubMed ID: 36157748. Abstract: Quantum dots (QDs) dispersed in UV-curable resin are used for patterning in photolithography and inkjet printing. However, low affinity between the main component of UV-curable resins known as celloxide, an alicyclic diepoxy compound, and QD surface ligands with alkyl chains causes significant aggregation of QDs. In this study, the dispersibility of core/shell CuInS2/ZnS QDs with adsorbed 1-dodecanethiol and oleic acid in celloxide was improved using the ligand exchange method to prepare transparent fluorescent nanocomposites. Cyclohexyl 3-mercaptopropionate (MPACH) and 3-mercaptopropionic acid (MPA) were successfully adsorbed onto the QDs. MPACH-modified QDs (QD-MPACH) were well dispersed in the UV-curable resin, whereas MPA-modified QDs (QD-MPA) exhibited significant aggregation. Nanocomposite plates containing dispersed QDs were prepared by UV irradiation. The QD-MPACH nanocomposite plate was transparent, while the QD-MPA nanocomposite plate was turbid. The homogeneous dispersion of QD-MPACH was attributed to the similarity in the molecular structure between MPACH and celloxide. The photoluminescence (PL) peak of the QD-MPA nanocomposite occurred at a longer wavelength than that of the QD-MPACH nanocomposite. Furthermore, compared with the absolute photoluminescence quantum yield (PLQY) of the as-prepared QDs in toluene (55%), that of the QD-MPA nanocomposite was smaller (46%), and that of the QD-MPACH nanocomposite was higher (61%). An enhanced self-absorption effect was observed for the QD-MPA nanocomposite because of significant light scattering by the aggregates and concentration quenching, resulting in the PL redshift and decreased PLQY. Moreover, the PL intensity of the QD-MPACH nanocomposite was maintained at 98% of the initial value after continuous excitation-light irradiation for 5 h. The high PLQY and photostability of the QD-MPACH nanocomposite are beneficial in practical applications.[Abstract] [Full Text] [Related] [New Search]