These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hsa_circ_0002082 up-regulates Centromere Protein F via abolishing miR-508-3p to promote breast cancer progression. Author: Liu Y, Liu Y, Luo J, Zhao W, Hu C, Chen G. Journal: J Clin Lab Anal; 2022 Nov; 36(11):e24697. PubMed ID: 36161346. Abstract: BACKGROUND: Circular RNAs (circRNAs) dysregulation has been revealed to function in the pathological processes of cancers. Herein, the role and mechanisms of hsa_circ_0002082 in breast cancer (BC) progression were elucidated. METHODS: In vivo and in vitro functional experiments were conducted, and the interaction between miR-508-3p and hsa_circ_0002082 or Centromere Protein F (CENPF) was elucidated. RESULTS: Hsa_circ_0002082 expression was higher in BC tissues and cell lines. Functionally, knockdown of hsa_circ_0002082 induced apoptosis and suppressed proliferation and metastasis in BC cells in vitro. Mechanistically, hsa_circ_0002082 targeted miR-508-3p, which was confirmed to be decreased in BC. MiR-508-3p overexpression suppressed BC cell malignant phenotypes, moreover, inhibition of miR-508-3p attenuated the anticancer action of hsa_circ_0002082 silencing on BC cells. Besides that, miR-508-3p targeted CENPF, CENPF was highly expressed in BC, CENPF up-regulation reversed the suppressive impacts of miR-508-3p on BC cell growth and metastasis. Besides, hsa_circ_0002082 silencing impeded BC growth in nude mice. CONCLUSION: Knockdown of hsa_circ_0002082 suppresses breast cancer growth and metastasis by miR-508-3p/CENPF axis, suggesting that hsa_circ_0002082 may be a promising target for breast cancer treatment.[Abstract] [Full Text] [Related] [New Search]