These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-Strength and Extensible Electrospun Yarn for Wearable Electronics.
    Author: Uzabakiriho PC, Wang M, Wang K, Ma C, Zhao G.
    Journal: ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):46068-46076. PubMed ID: 36169212.
    Abstract:
    Stretchable conductive yarns have received significant consideration in the direction of wearable and flexible electronics. Wearable electronic structures need strong materials to assure stability, durability, and an extensive range of strain to develop their applications. Therefore, manufacturing high-performance yarn-based devices with ultrarobustness and great stretchability with a simple, cost-effective, and scalable method remains a great challenge for wearable electronics. Here, a highly stretchable yarn with high performance is fabricated, which comprises a core TPU nanoyarn, successively decorated with a liquid metal (LM) layer, and a protective outer nanofiber layer. The ultrarobust (40 MPa) and high-strain (548%) conducting yarn presents potential applications in assembling strain sensors. Moreover, such a unique conductive yarn can be used as a highly deformable, stretchable conductor to charge a mobile phone or for data transfer, a sensor to monitor human activities, and as an effective control for a hand robot as well as for smart thermal management textile application. This research gives promising applications in the field of flexible and wearable electronics.
    [Abstract] [Full Text] [Related] [New Search]