These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: General Design Strategy to Precisely Control the Emission of Fluorophores via a Twisted Intramolecular Charge Transfer (TICT) Process. Author: Hanaoka K, Iwaki S, Yagi K, Myochin T, Ikeno T, Ohno H, Sasaki E, Komatsu T, Ueno T, Uchigashima M, Mikuni T, Tainaka K, Tahara S, Takeuchi S, Tahara T, Uchiyama M, Nagano T, Urano Y. Journal: J Am Chem Soc; 2022 Nov 02; 144(43):19778-19790. PubMed ID: 36191139. Abstract: Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Here we establish a new molecular design strategy to rationally develop activatable fluorescent probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. This approach was developed on the basis of a thorough investigation of the fluorescence quenching mechanism of N-phenyl rhodamine dyes (commercially available as the QSY series) by means of time-dependent density functional theory (TD-DFT) calculations and photophysical evaluation of their derivatives. To illustrate and validate this TICT-based design strategy, we employed it to develop practical fluorogenic probes for HaloTag and SNAP-tag. We further show that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.[Abstract] [Full Text] [Related] [New Search]