These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative proteomic analysis of saline tolerant, phosphate solubilizing endophytic Pantoea sp., and Pseudomonas sp. isolated from Eichhornia rhizosphere. Author: Priya P, Aneesh B, Sivakumar KC, Harikrishnan K. Journal: Microbiol Res; 2022 Dec; 265():127217. PubMed ID: 36206648. Abstract: Soil salinization is a major stress affecting crop production on a global scale. Application of stress tolerant plant growth promoting rhizobacteria (PGPR) in saline soil can be an ideal practice for improving soil fertility. Rhizospheric microbiota of stress tolerant Eichhornia crassipes was screened for saline tolerant phosphate solubilizing bacteria, and the two isolates showing maximum solubilization index at 1 M NaCl were subjected to further analyses. The isolates were identified as Pantoea dispersa and Pseudomonas aeruginosa. Among the two isolates, P. dispersa PSB1 showed better phosphorus (P) solubilization potential under saline stress (335 ± 30 mg/L) than P. aeruginosa PSB5 (200 ± 24 mg/L). The mechanisms of P-solubilization, such as the production of organic acids and phosphatase were found to be influenced negatively by saline stress. The adaptive mechanisms of the isolates to overcome salt stress were analyzed by protein profiling which revealed salt stress induced modulations in protein expression involved in amino acid biosynthesis, carbon metabolisms, chemotaxis, and stress responses. Survival mechanisms such as protein RecA, LexA repressor and iron-sulfur cluster synthesis were upregulated in both the organisms under saline stress. P. dispersa PSB1 showed improved defense mechanisms such as the production of osmotolerants, redox enzymes, and quorum quenchers under saline stress, which may explain its better P solubilization potential than the P. aeruginosa PSB5. This study emphasizes the need for molecular approaches like proteome analysis of PGPR for identifying novel traits like stress tolerance and plant growth promotion before developing them as biofertilizers and biocontrol formulations.[Abstract] [Full Text] [Related] [New Search]