These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Shubnikov-de Haas oscillations and nontrivial topological states in Weyl semimetal candidate SmAlSi. Author: Xu L, Niu H, Bai Y, Zhu H, Yuan S, He X, Han Y, Zhao L, Yang Y, Xia Z, Liang Q, Tian Z. Journal: J Phys Condens Matter; 2022 Oct 18; 34(48):. PubMed ID: 36206748. Abstract: The RAlX (R = Light rare earth; X = Ge, Si) compounds, as a family of magnetic Weyl semimetal, have recently attracted growing attention due to the tunability of Weyl nodes and its interactions with diverse magnetism by rare-earth atoms. Here, we report the magnetotransport evidence and electronic structure calculations on nontrivial band topology of SmAlSi, a new member of this family. At low temperatures, SmAlSi exhibits large non-saturated magnetoresistance (MR) (as large as ∼5500% at 2 K and 48 T) and distinct Shubnikov-de Haas (SdH) oscillations. The field dependent MRs at 2 K deviate from the semiclassical (μ0H)2variation but follow the power-law relation MR∝(μ0H)mwith a crossover fromm∼ 1.52 at low fields (μ0H< 15 T) tom∼ 1 under high fields (μ0H> 18 T), which is attributed to the existence of Weyl points and electron-hole compensated characteristics with high mobility. From the analysis of SdH oscillations, two fundamental frequencies originating from the Fermi surface pockets with non-trivialπBerry phases and small cyclotron mass can be identified, this feature is supported by the calculated electronic band structures with two Weyl pockets near the Fermi level. Our study establishes SmAlSi as a paradigm for researching the novel topological states of RAlX family.[Abstract] [Full Text] [Related] [New Search]