These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis and pharmacological evaluation of 2-arylurea-1,3,5-triazine derivative (XIN-9): A novel potent dual PI3K/mTOR inhibitor for cancer therapy.
    Author: Sun X, Zhang B, Luo L, Yang Y, He B, Zhang Q, Wang L, Xu S, Zheng P, Zhu W.
    Journal: Bioorg Chem; 2022 Dec; 129():106157. PubMed ID: 36209563.
    Abstract:
    Blocking the PI3K/AKT/mTOR pathway has been widely recognized as an attractive cancer therapeutic strategy because of its crucial role in cell growth and survival. In this study, a novel series of 2-arylurea-1,3,5-triazine derivatives had been synthesized and evaluated as highly potent PI3K and mTOR inhibitors. The new compounds exhibited cytotoxic activities against MCF-7, Hela and A549 cancer cell lines (IC50 = 0.03-36.54 μM). The most promising compound XIN-9 exhibited potent inhibition against PI3K and mTOR kinase (IC50 = 23.8 and 10.9 nM). Mechanistic study using real-time PCR revealed the ability of XIN-9 to inhibit PI3K and mTOR. In addition, compound XIN-9 arrested the cell cycle of MCF-7 cells at the G0/G1 phase. XIN-9 also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for XIN-9 toward PI3K and mTOR. Following in vitro studies, XIN-9 was further evaluated in MCF-7 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 41.67% (po, 75 mg/kg). Overall, this work indicated that compound XIN-9 represents a potential anticancer targeting PI3K/AKT/mTOR pathway.
    [Abstract] [Full Text] [Related] [New Search]