These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor.
    Author: Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L, Engstrom LD, Laguer J, Medwid J, Vanderpool D, Lifset E, Trinh D, Hoffman N, Wang X, David Lawson J, Gunn RJ, Smith CR, Thomas NC, Martinson M, Bergstrom A, Sullivan F, Bouhana K, Winski S, He L, Fernandez-Banet J, Pavlicek A, Haling JR, Rahbaek L, Marx MA, Olson P, Christensen JG.
    Journal: Nat Med; 2022 Oct; 28(10):2171-2182. PubMed ID: 36216931.
    Abstract:
    Recent progress in targeting KRASG12C has provided both insight and inspiration for targeting alternative KRAS mutants. In this study, we evaluated the mechanism of action and anti-tumor efficacy of MRTX1133, a potent, selective and non-covalent KRASG12D inhibitor. MRTX1133 demonstrated a high-affinity interaction with GDP-loaded KRASG12D with KD and IC50 values of ~0.2 pM and <2 nM, respectively, and ~700-fold selectivity for binding to KRASG12D as compared to KRASWT. MRTX1133 also demonstrated potent inhibition of activated KRASG12D based on biochemical and co-crystal structural analyses. MRTX1133 inhibited ERK1/2 phosphorylation and cell viability in KRASG12D-mutant cell lines, with median IC50 values of ~5 nM, and demonstrated >1,000-fold selectivity compared to KRASWT cell lines. MRTX1133 exhibited dose-dependent inhibition of KRAS-mediated signal transduction and marked tumor regression (≥30%) in a subset of KRASG12D-mutant cell-line-derived and patient-derived xenograft models, including eight of 11 (73%) pancreatic ductal adenocarcinoma (PDAC) models. Pharmacological and CRISPR-based screens demonstrated that co-targeting KRASG12D with putative feedback or bypass pathways, including EGFR or PI3Kα, led to enhanced anti-tumor activity. Together, these data indicate the feasibility of selectively targeting KRAS mutants with non-covalent, high-affinity small molecules and illustrate the therapeutic susceptibility and broad dependence of KRASG12D mutation-positive tumors on mutant KRAS for tumor cell growth and survival.
    [Abstract] [Full Text] [Related] [New Search]