These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chromosomal assignment of amplified genes in hydroxyurea-resistant hamster cells.
    Author: Tonin PN, Stallings RL, Carman MD, Bertino JR, Wright JA, Srinivasan PR, Lewis WH.
    Journal: Cytogenet Cell Genet; 1987; 45(2):102-8. PubMed ID: 3622008.
    Abstract:
    We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.
    [Abstract] [Full Text] [Related] [New Search]